138 research outputs found

    GeneTIER: prioritization of candidate disease genes using tissue-specific gene expression profiles.

    Get PDF
    Motivation In attempts to determine the genetic causes of human disease, researchers are often faced with a large number of candidate genes. Linkage studies can point to a genomic region containing hundreds of genes, while the high-throughput sequencing approach will often identify a great number of non-synonymous genetic variants. Since systematic experimental verification of each such candidate gene is not feasible, a method is needed to decide which genes are worth investigating further. Computational gene prioritization presents itself as a solution to this problem, systematically analyzing and sorting each gene from the most to least likely to be the disease-causing gene, in a fraction of the time it would take a researcher to perform such queries manually. Results Here we present GeneTIER (Gene TIssue Expression Ranker), a new web-based application for candidate gene prioritization. GeneTIER replaces knowledge-based inference traditionally used in candidate disease gene prioritization applications with experimental data from tissue-specific gene expression datasets and thus largely overcomes the bias towards the better characterized genes/diseases that commonly afflict other methods. We show that our approach is capable of accurate candidate gene prioritization and illustrate its strengths and weaknesses using case study examples. Availability and Implementation Freely available on the web at http://dna.leeds.ac.uk/GeneTIER/ Contact: [email protected]

    The influence of intercalating perfluorohexane into lipid shells on nano and microbubble stability

    Get PDF
    Microbubbles are potential diagnostic and therapeutic agents. In vivo stability is important as the bubbles are required to survive multiple passages through the heart and lungs to allow targeting and delivery. Here we have systematically varied key parameters affecting microbubble lifetime to significantly increase in vivo stability. Whilst shell and core composition are found to have an important role in improving microbubble stability, we show that inclusion of small quantities of C6F14 in the microbubble bolus significantly improves microbubble lifetime. Our results indicate that C6F14 inserts into the lipid shell, decreasing surface tension to 19 mN m-1, and increasing shell resistance, in addition to saturating the surrounding medium. Surface area isotherms suggest that C6F14 incorporates into the acyl chain region of the lipid at a high molar ratio, indicating ∌2 perfluorocarbon molecules per 5 lipid molecules. The resulting microbubble boluses exhibit a higher in vivo image intensity compared to commercial compositions, as well as longer lifetimes

    Reduction in the resident intestinal myelomonocytic cell population occurs during ApcMin/+ mouse intestinal tumorigenesis

    Get PDF
    With its significant contribution to cancer mortality globally, advanced colorectal cancer (CRC) requires new treatment strategies. However, despite recent good results for mismatch repair (MMR)‑deficient CRC and other malignancies, such as melanoma, the vast majority of MMR‑proficient CRCs are resistant to checkpoint inhibitor (CKI) therapy. MMR‑proficient CRCs commonly develop from precursor adenomas with enhanced Wnt‑signalling due to adenomatous polyposis coli (APC) mutations. In melanomas with enhanced Wnt signalling due to stabilized ÎČ‑catenin, immune anergy and resistance to CKI therapy has been observed, which is dependent on micro‑environmental myelomonocytic (MM) cell depletion in melanoma models. However, MM populations of colorectal adenomas or CRC have not been studied. To characterize resident intestinal MM cell populations during the early stages of tumorigenesis, the present study utilized the ApcMin/+ mouse as a model of MMR‑proficient CRC, using enhanced green fluorescent protein (EGFP) expression in the mouse lysozyme (M‑lys)lys‑EGFP/+ mouse as a pan‑myelomonocytic cell marker and a panel of murine macrophage surface markers. Total intestinal lamina propria mononuclear cell (LPMNC) numbers significantly decreased with age (2.32±1.39x107 [n=4] at 33 days of age vs. 1.06±0.24x107 [n=8] at 109 days of age) during intestinal adenoma development in ApcMin/+ mice (P=0.05; unpaired Student's t‑test), but not in wild‑type littermates (P=0.35). Decreased total LPMNC numbers were associated with atrophy of intestinal lymphoid follicles and the absence of MM/lymphoid cell aggregates in ApcMin/+ mouse intestine, but not spleen, compared with wild‑type mice. Furthermore, during the early stage of intestinal adenoma development, there was a two‑fold reduction of M‑lys expressing cells (P=0.05) and four‑fold reduction of ER‑HR3 (macrophage sub‑set) expressing cells (P=0.05; two tailed Mann‑Whitney U test) in mice with reduced total intestinal LPMNCs (n=3). Further studies are necessary to determine the relevance of these findings to immune‑surveillance of colorectal adenomas or MMR‑proficient CRC CKI therapy resistance

    Rapid Visualisation of Microarray Copy Number Data for the Detection of Structural Variations Linked to a Disease Phenotype

    Get PDF
    Whilst the majority of inherited diseases have been found to be caused by single base substitutions, small insertions or deletions (<1Kb), a significant proportion of genetic variability is due to copy number variation (CNV). The possible role of CNV in monogenic and complex diseases has recently attracted considerable interest. However, until the development of whole genome, oligonucleotide micro-arrays, designed specifically to detect the presence of copy number variation, it was not easy to screen an individual for the presence of unknown deletions or duplications with sizes below the level of sensitivity of optical microscopy (3–5 Mb). Now that currently available oligonucleotide micro-arrays have in excess of a million probes, the problem of copy number analysis has moved from one of data production to that of data analysis. We have developed CNViewer, to identify copy number variation that co-segregates with a disease phenotype in small nuclear families, from genome-wide oligonucleotide micro-array data. This freely available program should constitute a useful addition to the diagnostic armamentarium of clinical geneticists

    Prostate-specific membrane antigen: evidence for the existence of a second related human gene.

    Get PDF
    Prostate-specific membrane antigen (PSM) is a glycoprotein recognised by the prostate-specific monoclonal antibody 7E11-C5, which was raised against the human prostatic carcinoma cell line LNCaP. A cDNA clone for PSM has been described. PSM is of clinical importance for a number of reasons. Radiolabelled antibody is being evaluated both as an imaging agent and as an immunotherapeutic in prostate cancer. Use of the PSM promoter has been advocated for gene therapy applications to drive prostate-specific gene expression. Although PSM is expressed in normal prostate as well as in primary and secondary prostatic carcinoma, different splice variants in malignant tissue afford the prospect of developing reverse transcription-polymerase chain reaction (RT-PCR)-based diagnostic screens for the presence of prostatic carcinoma cells in the circulation. We have undertaken characterisation of the gene for PSM in view of the protein's interesting characteristics. Unexpectedly, we have found that there are other sequences apparently related to PSM in the human genome and that PSM genomic clones map to two separate and distinct loci on human chromosome 11. Investigation of the function of putative PSM-related genes will be necessary to enable us to define fully the role of PSM itself in the development of prostatic carcinoma and in the clinical management of this malignancy

    One-step fabrication of hollow-channel gold nanoflowers with excellent catalytic performance and large single-particle SERS activity

    Get PDF
    Hollow metallic nanostructures have shown potential in various applications including catalysis, drug delivery and phototherapy, owing to their large surface areas, reduced net density, and unique optical properties. In this study, novel hollow gold nanoflowers (HAuNFs) consisting of an open hollow channel in the center and multiple branches/tips on the outer surface are fabricated for the first time, via a facile one-step synthesis using an auto-degradable nanofiber as a bifunctional template. The one-dimensional (1D) nanofiber acts as both a threading template as well as a promoter of the anisotropic growth of the gold crystal, the combination of which leads to the formation of HAuNFs with a hollow channel and nanospikes. The synergy of favorable structural/surface features, including sharp edges, open cavity and high-index facets, provides our HAuNFs with excellent catalytic performance (activity and cycling stability) coupled with large single-particle SERS activity (including ∌30 times of activity in ethanol electro-oxidation and ∌40 times of single-particle SERS intensity, benchmarked against similar-sized solid gold nanospheres with smooth surfaces, as well as retaining 86.7% of the initial catalytic activity after 500 cycles in ethanol electro-oxidation). This innovative synthesis gives a nanostructure of the geometry distinct from the template and is extendable to fabricating other systems for example, hollow-channel silver nanoflowers (HAgNFs). It thus provides an insight into the design of hollow nanostructures via template methods, and offers a versatile synthetic strategy for diverse metal nanomaterials suited for a broad range of applications

    Optimising gold nanorod size for maximum photoacoustic response while minimising cell toxicity

    Get PDF
    Plasmonic nanoparticles show great potential for molecular-targeted photoacoustic (PA) imaging. To maximise light absorption, the gold nanorods (AuNRs) are illuminated at their surface plasmon resonance (SPR), which for biomedical application is typically in the ’optical window’ of 700-900nm. For AuNRs, one of the main factors that determines the SPR is their aspect ratio. Since it is possible to have a similar aspect ratio, but different size of the particle the choice of particle could have a critical effect on a number of factors, such as, photoacoustic emissions, cell toxicity and therapeutic efficacy. For example, a particular sized AuNR may produce a higher PA response, for an equivalent laser fluence, but be more toxic to cell populations. In this study, the PA response of AuNRs with four different volumes but similar aspect ratios (∌4) are compared. A linear relationship between incident laser fluence and PA amplitude is shown and results indicate that AuNRs with larger volumes produce stronger PA emissions. In-vitro cell studies were performed on a lung cancer cell line to assess the cell toxicity of the different sized AuNRs via a colourmetric assay

    One‐Step Preparation of Biocompatible Gold Nanoplates with Controlled Thickness and Adjustable Optical Properties for Plasmon‐Based Applications

    Get PDF
    The ability to synthesize plasmonic nanomaterials with well‐defined structures and tailorable size is crucial for exploring their potential applications. Gold nanoplates (AuNPLs) exhibit appealing structural and optical properties, yet their applications are limited by difficulties in thickness control. Other challenges include a narrow range of tunability in size and surface plasmon resonance, combined with a synthesis conventionally involving cytotoxic cetyltrimethylammonium (CTA) halide surfactant. Here, a one‐step, high‐yield synthesis of single‐crystalline AuNPLs is developed, based on the combined use of two structure‐directing agents, methyl orange and FeBr3, which undergo preferential adsorption onto different crystalline facets of gold. The obtained AuNPLs feature high shape homogeneity that enables mesoscopic self‐assembly, broad‐range tunability of dimensions (controlled thickness from ≈7 to ≈20 nm, accompanied by modulation of the edge length from ≈150 nm to ≈2 ”m) and plasmonic properties. These merits, coupled with a preparation free of CTA‐halide surfactants, have facilitated the exploration of various uses, especially in bio‐related areas. For example, they are demonstrated as biocompatible photothermal agents for cell ablation in NIR I and NIR II windows. This work paves the way to the innovative fabrication of anisotropic plasmonic nanomaterials with desired attributes for wide‐ranging practical applications

    Evaluation of Lipid-Stabilised Tripropionin Nanodroplets as a Delivery Route for Combretastatin A4

    Get PDF
    Lipid-based nanoemulsions are a cheap and elegant route for improving the delivery of hydrophobic drugs. Easy and quick to prepare, nanoemulsions have promise for the delivery of different therapeutic agents. Although multiple studies have investigated the effects of the oil and preparation conditions on the size of the nanoemulsion nanodroplets for food applications, analogous studies for nanoemulsions for therapeutic applications are limited. Here we present a study on the production of lipid-stabilised oil nanodroplets (LONDs) towards medical applications. A number of biocompatible oils were used to form LONDs with phospholipid coatings, and among these, squalane and tripropionin were chosen as model oils for subsequent studies. LONDs were formed by high pressure homogenisation, and their size was found to decrease with increasing production pressure. When produced at 175 MPa, all LONDs samples exhibited sizes between 100 − 300 nm, with polydispersity index PI between 0.1 − 0.3. The LONDs were stable for over six weeks, at 4 °C, and also under physiological conditions, showing modest changes in size (&lt;10%). The hydrophobic drug combretastatin A4 (CA4) was encapsulated in tripropionin LONDs with an efficiency of approximately 76%, achieving drug concentration of approximately 1.3 mg/ml. SVR mouse endothelial cells treated with CA4 tripropionin LONDs showed the microtubule disruption, characteristic of drug uptake for all tested doses, which suggests successful release of the CA4 from the LONDs

    OVA: Integrating molecular and physical phenotype data from multiple biomedical domain ontologies with variant filtering for enhanced variant prioritization

    Get PDF
    Motivation: Exome sequencing has become a de facto standard method for Mendelian disease gene discovery in recent years, yet identifying disease-causing mutations among thousands of candidate variants remains a non-trivial task. Results: Here we describe a new variant prioritization tool, OVA (ontology variant analysis), in which user-provided phenotypic information is exploited to infer deeper biological context. OVA combines a knowledge-based approach with a variant-filtering framework. It reduces the number of candidate variants by considering genotype and predicted effect on protein sequence, and scores the remainder on biological relevance to the query phenotype. We take advantage of several ontologies in order to bridge knowledge across multiple biomedical domains and facilitate computational analysis of annotations pertaining to genes, diseases, phenotypes, tissues and pathways. In this way, OVA combines information regarding molecular and physical phenotypes and integrates both human and model organism data to effectively prioritize variants. By assessing performance on both known and novel disease mutations, we show that OVA performs biologically meaningful candidate variant prioritization and can be more accurate than another recently published candidate variant prioritization tool
    • 

    corecore